sistemas de aprendizaje automatico machine learning
- Author: Cesar Perez Lopez
- ISBN: 978-84-19034-07-6
- EAN: 9788419034076
- Editorial: GARCETA GRUPO
- Language: Spanish
- Edizio urtea: 2022
- Format: RUSTIKA
- Page count: 544
- Size: 240x170
1-3 weeks
Synopsis
El libro está dirigido tanto a alumnos que siguen un Curso de especialización en Inteligencia Artificial y Big Data como a profesionales del sector. Comienza clasificando los sistemas, herramientas, técnicas y algoritmos o modelos aplicados al Aprendizaje Automático. A continuación, se tratan las técnicas de aprendizaje supervisado, sus fases y plataformas, así como los algoritmos y modelos más importantes. Se desarrollan las técnicas de regresión con sus fases de identificación, estimación, validación (diagnosis) y predicción. Se presentan los métodos especiales de regresión como PLS, LARS, LASSO, ELASTIC NET, RANSAC, THEIL, HUBERT, KERNEL RIDGE REGRESSION (KRR), SUPPORT VECTOR REGRESSION (SVR) y STOCHASTIC GRADIENT DESCENDT (SGD) entre otros. Asimismo, se tratan las técnicas de aprendizaje supervisado enfocadas a la clasificación o segmentación como los Modelos Logit y Probit, los Modelos Lineales Generalizados, los Árboles de Decisión, los Modelos de Análisis Discriminante, los Modelos SVM (Support Vector Machine), lo modelos kNN (Vecino más Cercano) y los Modelos SLRM (Respuesta de Autoaprendizaje). Tod